Exercises for the workshop on dualisable categories and continuous K-theory

Kaif Hilman[∗] Dominik Kirstein[†]

September 12, 2024

These are exercises collected from the workshop on Dualisable Categories and Continuous K–theory held at the MPIM Bonn on 9-14 September, 2024. The following are some of the available resources on this new subject:

- (1) Efimov [K–theory and localizing invariants of large categories](https://arxiv.org/abs/2405.12169)
- (2) Krause–Nikolaus–Pützstück [Lecture notes on sheaves on manifolds](https://www.uni-muenster.de/IVV5WS/WebHop/user/nikolaus/teaching.html)
- (3) Ramzi [The formal theory of dualizable presentable](https://sites.google.com/view/maxime-ramzi-en/publicationspreprints?authuser=0) ∞ –categories
- (4) Lehner [Exercises for Continuous K–theory](https://sites.google.com/view/georglehner/home?authuser=0)

Furthermore, some resources on the basics of algebraic K–theory include the following:

- (5) Hebestreit–Wagner [Lecture notes on algebraic and hermitian K–theory](https://sites.google.com/view/fabian-hebestreit/home/lecture-notes)
- (6) Winges [Lecture notes on localisation and devissage in algebraic K-theory](https://homepages.uni-regensburg.de/~wic42659/)
- (7) Hilman–McCandless [Lecture notes for an introduction on algebraic K–theory](https://sites.google.com/view/jonasmccandless/introduction-to-algebraic-k-theory?authuser=0)

Comments, corrections, and suggestions are of course very welcome!

Contents

1 Exercises from day 1	
2 Exercises from day 2	
3 Exercises from day 3	\mathbf{r}

[∗] kaif@mpim-bonn.mpg.de

[†] kirstein@mpim-bonn.mpg.de

1 Exercises from day 1

Exercise 1.1. Let $\mathcal{D} \stackrel{i}{\hookrightarrow} \mathcal{C} \stackrel{p}{\to} \mathcal{C}/\mathcal{D}$ be a Karoubi sequence.

- (1) Show that i admits a right adjoint if and only if p does.
- (2) In either case, show that $\mathcal{D} \stackrel{i^R}{\longleftarrow} \mathcal{C} \stackrel{p^R}{\longleftarrow} \mathcal{C}/\mathcal{D}$ is another Karoubi sequence.
- (3) In the situation of (1), show that $i(\mathcal{D})$ and $p^R(\mathcal{C}/\mathcal{D})$ generate $\mathcal C$ as a stable category.

Exercise 1.2. Show that a natural transformation $(-)^{\approx} \rightarrow \Omega^{\infty} K(-)$ (which is a map in Fun(Cat^{perf}, \mathcal{S})) uniquely enhances to a natural transformation of \mathbb{E}_{∞} –monoids. **Hint:** use the universal property of CMon as a right adjoint.

Exercise 1.3. Use the procedure described during Lecture 2 to show that there is an equivalence colim_X $F \simeq \lim_{X} F \in \text{Pr}^L$ for any functor $F: X \to \text{Pr}^L$ where X is an anima/ ∞ groupoid/space.

Exercise 1.4. Explicitly work out the duality data needed to witness that $Ind(\mathcal{C}_0)$ is dualisable for any $C_0 \in \text{Cat}^{\text{perf}}$. Similarly, work out the duality data witnessing that $\mathcal{D}(A)$ is dualisable with dual $\mathcal{D}(A^{op})$ for any ring A. **Hint:** use the mapping spectrum functor $\hom_{\mathcal{C}_0}\colon \mathcal{C}_0^\text{op}\times \mathcal{C}_0\to \operatorname{Sp}$ for the first part.

Exercise 1.5. Let $C_0 \in \text{Cat}^{\text{perf}}$ and write $C := \text{Ind}(C_0)$. Construct the left adjoint $\hat{Y}: C \to$ Ind(C) to the colimit functor colim: Ind(C) \to C. Hint: the functor \widehat{Y} is given explicitly by $\text{Ind}(Y_0)$ where $Y_0: \mathcal{C}_0 \hookrightarrow \text{Ind}(\mathcal{C}_0) = \mathcal{C}$ is the Yoneda embedding.

Exercise 1.6. Let $(C, \otimes, \mathbb{1})$ be a closed symmetric monoidal category. Show that retracts of dualisable objects are dualisable.

Exercise 1.7. Let $F: \mathcal{C} \to \mathcal{D}$ be a colimit preserving functor between presentable categories. Show the following:

- (1) If F admits a filtered colimit preserving right adjoint, then F preserves compact objects.
- (2) If C is compactly generated and F preserves compact objects, then the right adjoint of F preserves filtered colimits.
- (3) If F is fully faithful and its right adjoint preserves filtered colimits, then F reflects compact objects (i.e. if $F(x) \in \mathcal{D}$ is compact, then $x \in \mathcal{C}$ is compact).

Exercise 1.8. Let I be a set and J_i be a filtered category for every $i \in I$, and let $f_i \colon J_i \to \mathcal{C}$ be functors. Construct the natural transformation $\operatorname{colim}_{\prod_i J_i} \prod_I \to \prod_I \operatorname{colim}_{J_i}$ of functors $\prod_I J_i \to \mathcal{C}.$

Exercise 1.9. Let C be a dualisable category

- (1) Show that for $x \in C$ the functor $(C^{\vee})^{\text{op}} \to \text{Sp}, y \mapsto \text{hom}_{\mathcal{C} \otimes \mathcal{C}^{\vee}}(x \boxtimes y, \text{coev } \mathbb{1})$ is corepresented by an object $x^{\vee} \in C^{\vee}$, i.e. it is equivalent to $\hom_{\mathcal{C}^{\vee}}(-, x^{\vee})$, where coev: Sp \rightarrow C \otimes C^{\vee} denotes the coevaluation. This thus gives rise to a functor $(-)^{\vee}$: $\mathcal{C}^{\mathrm{op}} \to \mathcal{C}^{\vee}$.
- (2) Consider a ring R and $M \in \text{Mod}_R$. Show that $M^{\vee} = \text{hom}_R(M, R)$.
- (3) Show that, under the equivalence $\mathcal{C}^\vee \simeq \text{Fun}^L(\mathcal{C}, \text{Sp}),$ the object x^\vee corresponds to the functor $\hom_{\mathrm{Ind}(\mathcal{C})}(Y(x),Y(-)).$

Exercise 1.10. Let C be a dualisable category and $A \subseteq \mathcal{C}^{\omega}$ an idempotent complete stable subcategory.

- (1) Show that the canonical map $\mathcal{C}^{\omega}/\mathcal{A} \to (\mathcal{C}/\mathrm{Ind}(\mathcal{A}))^{\omega}$ is an equivalence. **Hint:** reduce to the case where C is compactly generated.
- (2) Deduce in particular that $(\mathcal{C}/\mathrm{Ind}(\mathcal{C}^{\omega}))^{\omega} \simeq 0$.

Exercise 1.11 (Thomason's theorem). Let C be a stable category. Call a full stable subcategory $\mathcal{D} \subseteq \mathcal{C}$ dense if \mathcal{D} generates \mathcal{C} under retracts. Thomason's theorem states that for a dense stable subcategory the map $K_0(\mathcal{D}) \to K_0(\mathcal{C})$ is injective. Furthermore, the maps $(\mathcal{D} \subseteq \mathcal{C}) \mapsto (K_0(\mathcal{D}) \subseteq K_0(\mathcal{C}))$ and $H \subseteq K_0(\mathcal{C}) \mapsto \mathcal{C}^H = \{x \in \mathcal{C} : [x] \in H\}$ determine inverse equivalences between the collection of dense stable subcategories of $\mathcal C$ and subgroups of $K_0(\mathcal{C})$. Prove Thomason's theorem in the following steps:

- (1) Show that \mathcal{C}^H is a dense stable subcategory.
- (2) Show that $H_{\mathcal{C}H} = H$ where $H_{\mathcal{D}} := \text{Im}(K_0(\mathcal{D}) \to K_0(\mathcal{C}))$.
- (3) Show that $\mathcal{C}^{H_D} = \mathcal{D}$. Hint: Use Heller's criterion from Exercise [3.11.](#page-5-0) Alternatively, define an equivalence relation \sim on $\pi_0(\mathcal{C}^{\simeq})$ via $x \sim x'$ iff there are $d, d' \in \mathcal{D}$ with $x \oplus d \simeq x' \oplus d'.$ Show that the map $K_0(\mathcal{C}) \to \pi_0(\mathcal{C}^{\simeq})/\sim, [x] \mapsto [x]$ is a well defined group homomorphism with kernel $H_{\mathcal{D}}$.
- (4) Show that $K_0(\mathcal{D}) \to K_0(\mathcal{C})$ is injective, i.e. $K_0(\mathcal{D}) = H_{\mathcal{D}}$. Hint: Apply the previous results for the category D and subgroup $N = \text{ker}(K_0(\mathcal{D}) \to K_0(\mathcal{C})) \subseteq K_0(\mathcal{D})$.

Exercise 1.12. Let $C \in \text{Cat}^{\text{perf}}$ and $D \subseteq C$ be a full stable idempotent complete subcategory. Show that for $x \in \mathcal{C}/\mathcal{D}$ there is $y \in \mathcal{C}$ which gets send to $x \oplus x[1] \in \mathcal{C}/\mathcal{D}$ under the projection. In fact, show that for all $z \in C/D$ such that $[z] = 0 \in K_0(\mathcal{C}/\mathcal{D})$, there exists a lift of z to an object $\widetilde{z} \in \mathcal{C}$. **Hint:** use Thomason's theorem from Exercise [1.11.](#page-2-0)

Exercise 1.13. Let I be a possibly infinite set and A_i be a collection of small stable categories for all $i \in I$. Let $\mathcal{B}_i \subseteq \mathcal{A}_i$ be stable subcategories. Then show that the canonical map $\prod_{I} {\cal A}_i/\prod_{I} {\cal B}_i \rightarrow \prod_{I} ({\cal A}_i/{\cal B}_i)$ is an equivalence.

Exercise 1.14. Let p_i be the *i*-th prime number so that for example $p_1 = 2, p_2 = 3$, etc. Write $A_n\coloneqq \mathbb{Z}[p_k^{-1}]$ $\mathcal{K}_k^{-1}, k \geq n$, so that for instance $A_1 = \mathbb{Q}$ and we have maps $A_1 \leftarrow A_2 \leftarrow A_3 \leftarrow \cdots$. By restriction of scalars, we thus obtain a functor

$$
\operatorname{colim}_{n} \mathcal{D}(A_n) \longrightarrow \mathcal{D}(\mathbb{Z}).
$$

Show that this functor is not fully faithful.

2 Exercises from day 2

Exercise 2.1. Let C be a stable presentable category. Show the following facts:

- (1) A map $f: x \to y$ in $\mathcal C$ is compact if and only for any filtered system $(z_i)_i$ in $\mathcal C$ together with a map $y \to \operatorname{colim}_i z_i$, the composite $x \to y \to \operatorname{colim}_i z_i$ factors through some z_j .
- (2) id_x is compact in C if and only if x is compact.
- (3) Compact maps in $\mathcal C$ form a two sided ideal.
- (4) Suppose that C is compactly generated. Then a map in C is compact if and only if it factors through a compact object.

Exercise 2.2. Let $F: \mathcal{C} \to \mathcal{D}$ be a colimit preserving functor between presentable stable categories.

- (1) Suppose that C is dualisable. Show that F preserves compact morphisms if and only if F is strongly continuous.
- (2) Suppose that C and D are dualisable. Show that F is strongly continuous if and only if the canonical transformation $\widehat{Y}_{\mathcal{D}} \circ F \to \text{Ind}(F) \circ \widehat{Y}_{\mathcal{C}}$ is an equivalence.

Exercise 2.3 (Homological epimorphisms). Consider a map $A \rightarrow B$ in Alg(Sp). Show that the map $B \otimes_A B \to B$ is an equivalence if and only if the restriction functor Res: $\text{Mod}_B \to$ Mod_A is fully faithful.

Exercise 2.4. Suppose we have an inverse system of spectra $X_0 \leftarrow X_1 \leftarrow X_2 \leftarrow \cdots$ such that $\pi_* X_i \leftarrow \pi_* X_{i+1}$ are the zero maps for all i. Show that $\lim_i X_i \simeq 0 \in$ Sp. Recall that this was used in Akhil's Lecture 2 in the proof of criterion (4) for dualisability in terms of compactly exhaustible maps. **Hint:** use the Mittag–Leffler condition for vanishing of \lim_{i}^{1} .

Exercise 2.5. Let $C, D \in \mathrm{Pr}^L_{\mathrm{st}}$ and recall the notations $\mathrm{Fun}^{\mathrm{acc}}(\mathcal{D}, \mathcal{E})$ and $\mathrm{Corr}(\mathcal{D}, \mathcal{E})$ from Sasha's Lecture 2.

- (1) Work out the details of the equivalence $\text{Fun}^{\text{acc}}(\mathcal{D}, \mathcal{E}) \simeq \text{Corr}(\mathcal{D}, \mathcal{E})$ as sketched in the lecture.
- (2) Work out the details that the composition structures on Fun^{acc} and Corr are compatible. That is, show that there is a naturally commuting square

Fun^{acc}(
$$
C
$$
, D) × Fun^{acc}(D , \mathcal{E}) $\xrightarrow{\circ}$ Fun^{acc}(C , \mathcal{E})
\n $\downarrow \simeq$
\nCorr(C , D) × Corr(D , \mathcal{E}) $\xrightarrow{\circ}$ Corr(C , \mathcal{E})

for $\mathcal{C}, \mathcal{D}, \mathcal{E} \in \mathrm{Pr}^L_{\mathrm{st}}.$

Exercise 2.6. Let A, B be small stable categories. Recall that, for a category C, we define $\text{Pro}(\mathcal{C}) := \text{Ind}(\mathcal{C}^{\text{op}})^{\text{op}}$. Show that there is an equivalence

 $\text{Fun}^{\text{acc,ex}}(\text{Ind}\mathcal{A},\text{Ind}\mathcal{B}) \simeq \text{Fun}^{\text{ex}}(\mathcal{B},\text{Pro}(\text{Ind}(\mathcal{A})))^{\text{op}}.$

3 Exercises from day 3

Exercise 3.1. Suppose that $A \rightarrow B \rightarrow C$ is a Karoubi sequence in Cat^{perf}. Show that $\mathrm{Ind}(\mathcal{A}) \to \mathrm{Ind}(\mathcal{B}) \to \mathrm{Ind}(\mathcal{C})$ is a short exact sequence in $\mathrm{Cat}_{\mathrm{st}}^{\mathrm{dual}}.$

Exercise 3.2. Let C be a dualisable category. For $a, b \in C^{\omega_1}$, show that

$$
\hom_{\text{Call}_{\omega_1}^{\text{cont}}}(a,b) \simeq \hom_{\mathcal{C}}(a,b)/\hom_{\text{Ind}(\mathcal{C})}(Y(a),Y(b))
$$

by using that colim: $\text{Ind}(\mathcal{C}) \to \mathcal{C}$ is right adjoint to \hat{Y} .

Exercise 3.3. Let $F: \mathcal{C} \to \mathcal{D}$ be a strongly continuous functor between stable presentable categories. Show that if C is dualisable, then the localising subcategory of $A \subseteq \mathcal{D}$ generated by the image of F is dualisable and the inclusion $A \subseteq \mathcal{D}$ is strongly continuous.

Exercise 3.4. Consider a commutative square

$$
\begin{array}{ccc}\n\mathcal{C}_0 & \longrightarrow & \mathcal{C}_1 \\
\downarrow F_0 & \downarrow F_1 \\
\mathcal{D}_0 & \longrightarrow & \mathcal{D}_1\n\end{array} \tag{1}
$$

in \Pr^L_{st} . Show the following:

- (1) If (\square) is a pullback square and F_1 is a localisation, then F_0 is a localisation and (\square) is also a pushout square.
- (2) If (\square) is a pushout square and F_0 is fully faithful, then F_1 is fully faithful.

Exercise 3.5. Show that the forgetful functor $\mathrm{Cat}_{\mathrm{st}}^{\mathrm{dual}} \to \mathrm{Pr}_{\mathrm{st}}^L$ preserves the following types of limits:

- (1) finite products;
- (2) fibers of strongly continuous localisations;
- (3) pullbacks where one leg is a strongly continuous localisation.

Exercise 3.6. Let $(\mathcal{C}_i)_i$ be a family of stable presentable categories. Show that if each \mathcal{C}_i is compactly generated, then $\prod_i C_i$ is compactly generated and $(\prod_i C_i)^{\omega} \simeq \bigoplus_i C_i^{\omega}$, where the coproduct is formed in Cat^{perf}.

Exercise 3.7 (Generalisation of Tamme's excision theorem). Consider a pullback of the form (\Box) in Cat $_{\rm st}^{\rm dual}$ and assume that F_1 is a localisation. Show that for any localising invariant $E\colon \mathrm{Cat}_{\mathrm{st}}^{\mathrm{dual}} \to \mathcal{E}$, the square

$$
E(\mathcal{C}_0) \longrightarrow E(\mathcal{C}_1)
$$

$$
\downarrow \qquad \qquad \downarrow
$$

$$
E(\mathcal{D}_0) \longrightarrow E(\mathcal{D}_1)
$$

is a pullback square.

Exercise 3.8. Work out the details that we have a Bousfield localisation

$$
\operatorname{Fun}(\mathbb{Q}^{\text{op}}_{\leq}, \operatorname{Sp}) \xrightarrow[\phi]{\phi} \Pi_{\mathbb{Q}} \operatorname{Sp}
$$

given by $\phi(F)_a\coloneqq\mathrm{cofib}(\mathrm{colim}_{b>a} F(b)\to F(a))$ and $\phi^R((X_a)_{a\in\mathbb{Q}})(b)=X_b.$ This was used in Sasha's Lecture 2 to obtain a short exact sequence in $\mathrm{Cat}_{\mathrm{st}}^{\mathrm{dual}}$ with kernel $\mathrm{Shv}_{\geq 0}(\mathbb{R},\mathrm{Sp}).$

Exercise 3.9 (Waldhausen's addtivity trick). Let $F: \text{Cat}^{\text{perf}} \to \mathcal{E}$ be a localising invariant. Show that for any fiber sequence $f \to g \to h$ in Fun^{ex}(\mathcal{A}, \mathcal{B}) there is an equivalence $F(g) \simeq$ $F(f) \oplus F(h)$ in $hom_{\mathcal{E}}(F(\mathcal{A}), F(\mathcal{B}))$. Hint: Use the split Karoubi sequence $\mathcal{C} \to \mathcal{C}^{\Delta^1} \to \mathcal{C}$ to first construct a splitting $F(\mathcal{C}^{\Delta^1}) \simeq F(\mathcal{C}) \oplus F(\mathcal{C}).$

Exercise 3.10 (Universal K-equivalences). An exact functor $f: A \rightarrow B$ between small stable categories is called a *universal K-equivalence* if there is an exact functor $g: \mathcal{B} \to \mathcal{A}$ such that $[gf] = [\mathrm{id}_{\mathcal{A}}]$ in $K_0(\mathrm{Fun}^{\mathrm{ex}}(\mathcal{A}, \mathcal{A}))$ and $[fg] = [\mathrm{id}_{\mathcal{B}}]$ in $K_0(\mathrm{Fun}^{\mathrm{ex}}(\mathcal{B}, \mathcal{B})).$

Show that f is a univeral K -equivalence if and only if for every additive invariant $F: \text{Cat}^{\text{st}} \to \mathcal{E}$, the map $F(f): F(\mathcal{A}) \to F(\mathcal{B})$ is an equivalence. (If you don't know what additive invariants are, just prove the \implies direction for any localising invariant)

Exercise 3.11 (Heller's criterion). Let C be a small stable category. Show that for $x, y \in C$ the following are equivalent:

- (1) $[x] = [y]$ in $K_0(\mathcal{C})$.
- (2) There exist $u, v, z \in \mathcal{C}$ such and fiber sequences $u \to x \oplus z \to v$ and $u \to y \oplus z \to v$.

Hint: Define an equivalence relation \sim on $\pi_0(\mathcal{C}^\simeq)$ by (2) and construct an equivalence $K_0(\mathcal{C})\simeq$ $\pi_0(\mathcal{C}^{\simeq})/\sim.$

As an application, show that for a family $(C_i)_{i\in I}$ of small stable categories, the natural map $K_0(\prod_i \mathcal{C}_i) \to \prod_i K_0(\mathcal{C}_i)$ is an equivalence.