Exercises for the workshop on dualisable categories and continuous K-theory

KAIF HILMAN^{*} Dominik Kirstein[†]

September 12, 2024

These are exercises collected from the workshop on Dualisable Categories and Continuous K-theory held at the MPIM Bonn on 9-14 September, 2024. The following are some of the available resources on this new subject:

- (1) Efimov K–theory and localizing invariants of large categories
- (2) Krause-Nikolaus-Pützstück Lecture notes on sheaves on manifolds
- (3) Ramzi The formal theory of dualizable presentable ∞ -categories
- (4) Lehner Exercises for Continuous K–theory

Furthermore, some resources on the basics of algebraic K-theory include the following:

- (5) Hebestreit–Wagner Lecture notes on algebraic and hermitian K–theory
- (6) Winges Lecture notes on localisation and devissage in algebraic K-theory
- (7) Hilman–McCandless Lecture notes for an introduction on algebraic K-theory

Comments, corrections, and suggestions are of course very welcome!

Contents

1	Exercises from day 1	2
2	Exercises from day 2	4
3	Exercises from day 3	5

^{*}kaif@mpim-bonn.mpg.de

[†]kirstein@mpim-bonn.mpg.de

1 Exercises from day 1

Exercise 1.1. Let $\mathcal{D} \stackrel{i}{\hookrightarrow} \mathcal{C} \stackrel{p}{\to} \mathcal{C}/\mathcal{D}$ be a Karoubi sequence.

- (1) Show that i admits a right adjoint if and only if p does.
- (2) In either case, show that $\mathcal{D} \xleftarrow{i^R} \mathcal{C} \xleftarrow{p^R} \mathcal{C}/\mathcal{D}$ is another Karoubi sequence.
- (3) In the situation of (1), show that $i(\mathcal{D})$ and $p^R(\mathcal{C}/\mathcal{D})$ generate \mathcal{C} as a stable category.

Exercise 1.2. Show that a natural transformation $(-)^{\simeq} \to \Omega^{\infty} K(-)$ (which is a map in Fun(Cat^{perf}, S)) uniquely enhances to a natural transformation of \mathbb{E}_{∞} -monoids. **Hint:** use the universal property of CMon as a right adjoint.

Exercise 1.3. Use the procedure described during Lecture 2 to show that there is an equivalence $\operatorname{colim}_X F \simeq \lim_X F \in \operatorname{Pr}^L$ for any functor $F \colon X \to \operatorname{Pr}^L$ where X is an anima/ ∞ -groupoid/space.

Exercise 1.4. Explicitly work out the duality data needed to witness that $\operatorname{Ind}(\mathcal{C}_0)$ is dualisable for any $\mathcal{C}_0 \in \operatorname{Cat}^{\operatorname{perf}}$. Similarly, work out the duality data witnessing that $\mathcal{D}(A)$ is dualisable with dual $\mathcal{D}(A^{\operatorname{op}})$ for any ring A. **Hint:** use the mapping spectrum functor $\operatorname{hom}_{\mathcal{C}_0} : \mathcal{C}_0^{\operatorname{op}} \times \mathcal{C}_0 \to \operatorname{Sp}$ for the first part.

Exercise 1.5. Let $C_0 \in \operatorname{Cat}^{\operatorname{perf}}$ and write $\mathcal{C} \coloneqq \operatorname{Ind}(\mathcal{C}_0)$. Construct the left adjoint $\widehat{Y} : \mathcal{C} \to \operatorname{Ind}(\mathcal{C})$ to the colimit functor colim: $\operatorname{Ind}(\mathcal{C}) \to \mathcal{C}$. **Hint:** the functor \widehat{Y} is given explicitly by $\operatorname{Ind}(Y_0)$ where $Y_0 : \mathcal{C}_0 \hookrightarrow \operatorname{Ind}(\mathcal{C}_0) = \mathcal{C}$ is the Yoneda embedding.

Exercise 1.6. Let $(\mathcal{C}, \otimes, \mathbb{1})$ be a closed symmetric monoidal category. Show that retracts of dualisable objects are dualisable.

Exercise 1.7. Let $F : C \to D$ be a colimit preserving functor between presentable categories. Show the following:

- (1) If F admits a filtered colimit preserving right adjoint, then F preserves compact objects.
- (2) If C is compactly generated and F preserves compact objects, then the right adjoint of F preserves filtered colimits.
- (3) If F is fully faithful and its right adjoint preserves filtered colimits, then F reflects compact objects (i.e. if $F(x) \in \mathcal{D}$ is compact, then $x \in \mathcal{C}$ is compact).

Exercise 1.8. Let *I* be a set and J_i be a filtered category for every $i \in I$, and let $f_i: J_i \to C$ be functors. Construct the natural transformation $\operatorname{colim}_{\prod_i J_i} \prod_I \to \prod_I \operatorname{colim}_{J_i}$ of functors $\prod_I J_i \to C$.

Exercise 1.9. Let C be a dualisable category

- Show that for x ∈ C the functor (C[∨])^{op} → Sp, y ↦ hom_{C⊗C[∨]}(x ⊠ y, coev 1) is corepresented by an object x[∨] ∈ C[∨], i.e. it is equivalent to hom_{C[∨]}(-, x[∨]), where coev: Sp → C ⊗ C[∨] denotes the coevaluation. This thus gives rise to a functor (-)[∨]: C^{op} → C[∨].
- (2) Consider a ring R and $M \in Mod_R$. Show that $M^{\vee} = \hom_R(M, R)$.
- (3) Show that, under the equivalence $\mathcal{C}^{\vee} \simeq \operatorname{Fun}^{L}(\mathcal{C}, \operatorname{Sp})$, the object x^{\vee} corresponds to the functor $\operatorname{hom}_{\operatorname{Ind}(\mathcal{C})}(Y(x), \widehat{Y}(-))$.

Exercise 1.10. Let C be a dualisable category and $A \subseteq C^{\omega}$ an idempotent complete stable subcategory.

- Show that the canonical map C^ω/A → (C/Ind(A))^ω is an equivalence. Hint: reduce to the case where C is compactly generated.
- (2) Deduce in particular that $(\mathcal{C}/\mathrm{Ind}(\mathcal{C}^{\omega}))^{\omega} \simeq 0.$

Exercise 1.11 (Thomason's theorem). Let \mathcal{C} be a stable category. Call a full stable subcategory $\mathcal{D} \subseteq \mathcal{C}$ dense if \mathcal{D} generates \mathcal{C} under retracts. Thomason's theorem states that for a dense stable subcategory the map $K_0(\mathcal{D}) \to K_0(\mathcal{C})$ is injective. Furthermore, the maps $(\mathcal{D} \subseteq \mathcal{C}) \mapsto (K_0(\mathcal{D}) \subseteq K_0(\mathcal{C}))$ and $H \subseteq K_0(\mathcal{C}) \mapsto \mathcal{C}^H = \{x \in \mathcal{C} : [x] \in H\}$ determine inverse equivalences between the collection of dense stable subcategories of \mathcal{C} and subgroups of $K_0(\mathcal{C})$. Prove Thomason's theorem in the following steps:

- (1) Show that C^H is a dense stable subcategory.
- (2) Show that $H_{\mathcal{C}^H} = H$ where $H_{\mathcal{D}} := \operatorname{Im}(K_0(\mathcal{D}) \to K_0(\mathcal{C})).$
- (3) Show that C^{H_D} = D. Hint: Use Heller's criterion from Exercise 3.11. Alternatively, define an equivalence relation ~ on π₀(C[≃]) via x ~ x' iff there are d, d' ∈ D with x ⊕ d ≃ x' ⊕ d'. Show that the map K₀(C) → π₀(C[≃])/ ~, [x] ↦ [x] is a well defined group homomorphism with kernel H_D.
- (4) Show that $K_0(\mathcal{D}) \to K_0(\mathcal{C})$ is injective, i.e. $K_0(\mathcal{D}) = H_{\mathcal{D}}$. Hint: Apply the previous results for the category \mathcal{D} and subgroup $N = \ker(K_0(\mathcal{D}) \to K_0(\mathcal{C})) \subseteq K_0(\mathcal{D})$.

Exercise 1.12. Let $C \in \operatorname{Cat}^{\operatorname{perf}}$ and $\mathcal{D} \subseteq C$ be a full stable idempotent complete subcategory. Show that for $x \in C/\mathcal{D}$ there is $y \in C$ which gets send to $x \oplus x[1] \in C/\mathcal{D}$ under the projection. In fact, show that for all $z \in C/\mathcal{D}$ such that $[z] = 0 \in K_0(C/\mathcal{D})$, there exists a lift of z to an object $\tilde{z} \in C$. **Hint:** use Thomason's theorem from Exercise 1.11.

Exercise 1.13. Let I be a possibly infinite set and A_i be a collection of small stable categories for all $i \in I$. Let $B_i \subseteq A_i$ be stable subcategories. Then show that the canonical map $\prod_I A_i / \prod_I B_i \rightarrow \prod_I (A_i / B_i)$ is an equivalence.

Exercise 1.14. Let p_i be the *i*-th prime number so that for example $p_1 = 2, p_2 = 3$, etc. Write $A_n := \mathbb{Z}[p_k^{-1}, k \ge n]$, so that for instance $A_1 = \mathbb{Q}$ and we have maps $A_1 \leftarrow A_2 \leftarrow A_3 \leftarrow \cdots$. By restriction of scalars, we thus obtain a functor

$$\operatorname{colim}_{n} \mathcal{D}(A_{n}) \longrightarrow \mathcal{D}(\mathbb{Z}).$$

Show that this functor is not fully faithful.

2 Exercises from day 2

Exercise 2.1. Let C be a stable presentable category. Show the following facts:

- (1) A map $f: x \to y$ in C is compact if and only for any filtered system $(z_i)_i$ in C together with a map $y \to \operatorname{colim}_i z_i$, the composite $x \to y \to \operatorname{colim}_i z_i$ factors through some z_i .
- (2) id_x is compact in \mathcal{C} if and only if x is compact.
- (3) Compact maps in C form a two sided ideal.
- (4) Suppose that C is compactly generated. Then a map in C is compact if and only if it factors through a compact object.

Exercise 2.2. Let $F: \mathcal{C} \to \mathcal{D}$ be a colimit preserving functor between presentable stable categories.

- (1) Suppose that C is dualisable. Show that F preserves compact morphisms if and only if F is strongly continuous.
- (2) Suppose that C and D are dualisable. Show that F is strongly continuous if and only if the canonical transformation Ŷ_D F → Ind(F) Ŷ_C is an equivalence.

Exercise 2.3 (Homological epimorphisms). Consider a map $A \to B$ in Alg(Sp). Show that the map $B \otimes_A B \to B$ is an equivalence if and only if the restriction functor Res: $Mod_B \to Mod_A$ is fully faithful.

Exercise 2.4. Suppose we have an inverse system of spectra $X_0 \leftarrow X_1 \leftarrow X_2 \leftarrow \cdots$ such that $\pi_*X_i \leftarrow \pi_*X_{i+1}$ are the zero maps for all *i*. Show that $\lim_i X_i \simeq 0 \in$ Sp. Recall that this was used in Akhil's Lecture 2 in the proof of criterion (4) for dualisability in terms of compactly exhaustible maps. **Hint:** use the Mittag–Leffler condition for vanishing of \lim_i^1 .

Exercise 2.5. Let $\mathcal{C}, \mathcal{D} \in \operatorname{Pr}_{\mathrm{st}}^{L}$ and recall the notations $\operatorname{Fun}^{\mathrm{acc}}(\mathcal{D}, \mathcal{E})$ and $\operatorname{Corr}(\mathcal{D}, \mathcal{E})$ from Sasha's Lecture 2.

- Work out the details of the equivalence Fun^{acc}(D, E) ~ Corr(D, E) as sketched in the lecture.
- (2) Work out the details that the composition structures on Fun^{acc} and Corr are compatible. That is, show that there is a naturally commuting square

$$\begin{array}{c} \operatorname{Fun}^{\operatorname{acc}}(\mathcal{C},\mathcal{D}) \times \operatorname{Fun}^{\operatorname{acc}}(\mathcal{D},\mathcal{E}) & \stackrel{\circ}{\longrightarrow} \operatorname{Fun}^{\operatorname{acc}}(\mathcal{C},\mathcal{E}) \\ & \downarrow^{\simeq} & \simeq \downarrow \\ \operatorname{Corr}(\mathcal{C},\mathcal{D}) \times \operatorname{Corr}(\mathcal{D},\mathcal{E}) & \stackrel{\circ}{\longrightarrow} \operatorname{Corr}(\mathcal{C},\mathcal{E}) \end{array}$$

for $\mathcal{C}, \mathcal{D}, \mathcal{E} \in \operatorname{Pr}_{\mathrm{st}}^{L}$.

Exercise 2.6. Let \mathcal{A}, \mathcal{B} be small stable categories. Recall that, for a category \mathcal{C} , we define $\operatorname{Pro}(\mathcal{C}) \coloneqq \operatorname{Ind}(\mathcal{C}^{\operatorname{op}})^{\operatorname{op}}$. Show that there is an equivalence

 $\operatorname{Fun}^{\operatorname{acc},\operatorname{ex}}(\operatorname{Ind}\mathcal{A},\operatorname{Ind}\mathcal{B})\simeq\operatorname{Fun}^{\operatorname{ex}}(\mathcal{B},\operatorname{Pro}(\operatorname{Ind}(\mathcal{A})))^{\operatorname{op}}.$

3 Exercises from day 3

Exercise 3.1. Suppose that $\mathcal{A} \to \mathcal{B} \to \mathcal{C}$ is a Karoubi sequence in $\operatorname{Cat}^{\operatorname{perf}}$. Show that $\operatorname{Ind}(\mathcal{A}) \to \operatorname{Ind}(\mathcal{B}) \to \operatorname{Ind}(\mathcal{C})$ is a short exact sequence in $\operatorname{Cat}_{\operatorname{st}}^{\operatorname{dual}}$.

Exercise 3.2. Let C be a dualisable category. For $a, b \in C^{\omega_1}$, show that

$$\hom_{\operatorname{Calk}_{\omega_1}^{\operatorname{cont}}}(a,b) \simeq \hom_{\mathcal{C}}(a,b) / \hom_{\operatorname{Ind}(\mathcal{C})}(Y(a),Y(b))$$

by using that colim: $\operatorname{Ind}(\mathcal{C}) \to \mathcal{C}$ is right adjoint to \widehat{Y} .

Exercise 3.3. Let $F : \mathcal{C} \to \mathcal{D}$ be a strongly continuous functor between stable presentable categories. Show that if \mathcal{C} is dualisable, then the localising subcategory of $\mathcal{A} \subseteq \mathcal{D}$ generated by the image of F is dualisable and the inclusion $\mathcal{A} \subseteq \mathcal{D}$ is strongly continuous.

Exercise 3.4. Consider a commutative square

$$\begin{array}{ccc} \mathcal{C}_0 & \longrightarrow & \mathcal{C}_1 \\ \downarrow F_0 & & \downarrow F_1 \\ \mathcal{D}_0 & \longrightarrow & \mathcal{D}_1 \end{array} \tag{\Box}$$

in Pr_{st}^{L} . Show the following:

- (1) If (\Box) is a pullback square and F_1 is a localisation, then F_0 is a localisation and (\Box) is also a pushout square.
- (2) If (\Box) is a pushout square and F_0 is fully faithful, then F_1 is fully faithful.

Exercise 3.5. Show that the forgetful functor $Cat_{st}^{dual} \rightarrow Pr_{st}^{L}$ preserves the following types of limits:

- (1) finite products;
- (2) fibers of strongly continuous localisations;
- (3) pullbacks where one leg is a strongly continuous localisation.

Exercise 3.6. Let $(C_i)_i$ be a family of stable presentable categories. Show that if each C_i is compactly generated, then $\prod_i C_i$ is compactly generated and $(\prod_i C_i)^{\omega} \simeq \bigoplus_i C_i^{\omega}$, where the coproduct is formed in Cat^{perf}.

Exercise 3.7 (Generalisation of Tamme's excision theorem). Consider a pullback of the form (\Box) in $\operatorname{Cat}_{\operatorname{st}}^{\operatorname{dual}}$ and assume that F_1 is a localisation. Show that for any localising invariant $E: \operatorname{Cat}_{\operatorname{st}}^{\operatorname{dual}} \to \mathcal{E}$, the square

is a pullback square.

Exercise 3.8. Work out the details that we have a Bousfield localisation

$$\operatorname{Fun}(\mathbb{Q}^{\operatorname{op}}_{\leq}, \operatorname{Sp}) \xrightarrow{\phi} \prod_{\mathbb{Q}} \operatorname{Sp}$$

given by $\phi(F)_a \coloneqq \operatorname{cofib}(\operatorname{colim}_{b>a} F(b) \to F(a))$ and $\phi^R((X_a)_{a \in \mathbb{Q}})(b) = X_b$. This was used in Sasha's Lecture 2 to obtain a short exact sequence in $\operatorname{Cat}_{\mathrm{st}}^{\mathrm{dual}}$ with kernel $\operatorname{Shv}_{\geq 0}(\mathbb{R}, \operatorname{Sp})$.

Exercise 3.9 (Waldhausen's addivity trick). Let $F : \operatorname{Cat}^{\operatorname{perf}} \to \mathcal{E}$ be a localising invariant. Show that for any fiber sequence $f \to g \to h$ in $\operatorname{Fun}^{\operatorname{ex}}(\mathcal{A}, \mathcal{B})$ there is an equivalence $F(g) \simeq F(f) \oplus F(h)$ in $\hom_{\mathcal{E}}(F(\mathcal{A}), F(\mathcal{B}))$. **Hint:** Use the split Karoubi sequence $\mathcal{C} \to \mathcal{C}^{\Delta^1} \to \mathcal{C}$ to first construct a splitting $F(\mathcal{C}^{\Delta^1}) \simeq F(\mathcal{C}) \oplus F(\mathcal{C})$.

Exercise 3.10 (Universal *K*-equivalences). An exact functor $f : \mathcal{A} \to \mathcal{B}$ between small stable categories is called a *universal K*-equivalence if there is an exact functor $g : \mathcal{B} \to \mathcal{A}$ such that $[gf] = [\mathrm{id}_{\mathcal{A}}]$ in $K_0(\mathrm{Fun}^{\mathrm{ex}}(\mathcal{A}, \mathcal{A}))$ and $[fg] = [\mathrm{id}_{\mathcal{B}}]$ in $K_0(\mathrm{Fun}^{\mathrm{ex}}(\mathcal{B}, \mathcal{B}))$.

Show that f is a universal K-equivalence if and only if for every additive invariant $F: \operatorname{Cat}^{\operatorname{st}} \to \mathcal{E}$, the map $F(f): F(\mathcal{A}) \to F(\mathcal{B})$ is an equivalence. (If you don't know what additive invariants are, just prove the \Longrightarrow direction for any localising invariant)

Exercise 3.11 (Heller's criterion). Let C be a small stable category. Show that for $x, y \in C$ the following are equivalent:

- (1) [x] = [y] in $K_0(\mathcal{C})$.
- (2) There exist $u, v, z \in C$ such and fiber sequences $u \to x \oplus z \to v$ and $u \to y \oplus z \to v$.

Hint: Define an equivalence relation \sim on $\pi_0(\mathcal{C}^{\simeq})$ by (2) and construct an equivalence $K_0(\mathcal{C}) \simeq \pi_0(\mathcal{C}^{\simeq}) / \sim$.

As an application, show that for a family $(C_i)_{i \in I}$ of small stable categories, the natural map $K_0(\prod_i C_i) \to \prod_i K_0(C_i)$ is an equivalence.