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1 Introduction

These are live latex notes of the lecture series given by Akhil Mathew as a part of the workshop ”Du-
alizable Categories and Continuous K-theory” held at MPIM Bonn (Sept 9-13, 2024).

The lecture series cover an introduction to the notion of Dualizable categories and localizing in-
variants which is useful in defining K-theory for large presentable categories extending the notion from
stable∞-categories. The lecture series include defining the basic notions in these contexts and stating
results on how to compute limits and colimits in the dualizable context.

Apologies in advance for typos and mistakes. I hope these lecture notes are helpful for reader who
are looking for a concise introduction to the language of dualizable categories.

2 Lecture 1 : Localizing Invariants.

Setup: Let C be a small stable ∞-category.

Definition 2.1. K0(C) is defined as free abelian group on [X] ∈ C modulo the relation of [X] = [X ′]+[X ′′]
where X ′ → X→ X ′′ is a fiber sequence.

The above notion depends on the homotopy category.
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2 - Lecture 1 : Localizing Invariants. Dual Cats and Cont. K-theory.

We can define after Quillen, Waldhausen a spectrum K(C) such that π0K(C) is K0(C). K(C) is
homotopical enhancement of K0.

Definition 2.2. Catperf is the ∞-category of small, idempotent complete stable ∞-categories and
exact functors between theme which preserve finite colimits.

Definition 2.3. Let C ∈ Catperf and D ⊂ C inclusion in Catperf . Then the Karoubi quotient is the
pushout

D C

0 C/D

(1)

which is a pushout and it is infact a pullback. The sequence 0 → D → C → C/D → 0 is called a
Karoubi sequence.

Informal description of the Karoubi quotient: We have a quotient functors

p : C → C/D

Given X, Y ∈ C, then
HomC/D(X, Y) = colimY ′ HomC(X, Y

′)

where the colimits is over all such Y ′ such. that cofib(Y → Y ′) ∈ D.

Remark 2.4. The above morphism p is not essentially surjective but it is upto retracts.

Example 2.5. • Let X be a qcqs scheme and U ⊂ X qc open. Then the we have an exact sequence
:

Perf(X on Z)→ Perf(X)→ Perf(U)

is a Karoubi sequence due to Thomasson-Trobaugh.

• Let A ∈ Catperf . Then define

Calk(A) = Ind(A)/A ; Calkκ(A) = Indκ(A)/A (2)

where κ is a regular cardinal.
Note that for representative

HomCalk(A)(" lim−→
i

Xi", " lim−→
j

Yj") =
lim←−i

lim
−→j

HomA(Xi, Yj)

lim
−→j

lim←−i
HomA(Xi, Yj)

• If A = Perf(R), then Calk(A) = D(R)/Perf(R).

• If k is a field and V is a vector space and let A = category of vector spaces over k, then Calk(A)
is the quotient

k− linear maps

maps of finite rank
. (3)

We recall the notion of semi-orthogonal. decompsition which is an alternate way of understanding
Karoubi sequences.

Definition 2.6. Let C ∈ Catstb,idem. A semiorthogonal decomposition of C = ⟨C1, C2⟩ consists of
stable subcats C1, C2 ⊂ C such that
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2 - Lecture 1 : Localizing Invariants. Dual Cats and Cont. K-theory.

1. X1 ∈ C1, X2 ∈ C2 =⇒ HomC(X2, X1) = 0,

2. If Y ∈ C, then there exists a fiber sequence

Y2 → Y → Y1 (4)

such that Y1 ∈ C1, Y2 ∈ C2.

Remark 2.7. Some remarks on the above definition:

• Y determines Y1, Y2 upto contractible choices.

• Enough to require that C1, C2 generate C.

• We have a Karoubi sequence
C2 → C → C1 (5)

where the latter map sends Y → Y1.

• An example is Perf(P1) = ⟨O,O(1)⟩.

• Given a Karoubi sequence

0→ A i
−→ B p

−→ B/A→ 0 (6)

if either

1. i admits a right adjoint iR

2. p admits a right adjoint pR.

then B = ⟨ker(iR), p(A)⟩ or ⟨pR(B/A), i(A)⟩

Construction 2.8. Let D ⊂ C in Catperf . We want

Ind(D)→ Ind(C)→ Ind(C/D)

to be Karoubi sequence. This forces

C/D = ker(iR : Ind(C)→ Ind(D))ω.

Remark 2.9. Ind(C) = Funex(Cop,Sp) with this identification iR is am map given by restriction.

Definition 2.10. Let E be a stable ∞-category. A localizing invariant is a functor

F : Catperf → E (7)

such that

1. F(0) = 0,

2. If D ⊂ C an inclusion in Catperf , then

F(D) F(C)

0 F(C/D)

(8)

is a pushout.

Usually we require E to be accessbile and F preserves κ-filtered colimits for some κ.
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3 - Lecture II : Dualizable categories. Dual Cats and Cont. K-theory.

Example 2.11. • If C = ⟨C1, C2⟩ and F is localizing , then F(C) ∼= F(C1)⊕F(C2). Functors satisfying
this condition are called additive invariants.

• C ∈ Catperf , consider Indω1(C) and Calkω1
(C), then we have a fiber sequence

F(C)→ F(Indω1(C))→ F(Calkω1
(C)) (9)

the middle term vanishes due to Eilenberg-Swindle and thus we have F(C) ∼= ΩF(Calkω1
(C)).

Theorem 2.12 (BGT,Barwick). K : Catperf → Sp is the initial localizing invariant equipped with a
natural map C∼ → Ω∞K(C).

Other examples of localizing invariants are THH,TC.

Definition 2.13 (BGT). The∞-category of localizing motives Motloc is the initial presentable stable∞-category equipped with a localizing invariant

Uloc : Cat
perf → Motloc (10)

that preserves filtered colimits.

Remark 2.14. Motloc is quotient of Fun(Catperf ,Sp) .

Theorem 2.15 (BGT). For all C ∈ Catperf , we have

HomMotloc(Uloc(Sp
ω),Uloc(C)) ∼= K(C)

.

3 Lecture II : Dualizable categories.

Definition 3.1. An ∞-category C is presentable if

1. C has all colimits,

2. For some regular cardinal κ, Cκ is small and C ∼= Indκ(Cκ) where Cκ is all such objects X ∈ C
such that Hom(−, X) preserves κ-filtered colimits.

Example 3.2. C = Ind(Cω) is presentable. We will work on κ = ω1 which applies to most cases
in practice this week. Commuting with ω1-filtered colimits means that any countable subset has an
upper bound (whereas filtered means only finite sets has upper bound).

Definition 3.3. PrL is ∞-category whose objects are presentable ∞-categories and morphisms are
colimit preserving functors.

Remark 3.4. • Limits in PrL are computed in big infinity categories via the inclusion PrL ↪→
Ĉat∞.

• Colimits in PrL are computed by taking limits in PrR via the inclusion to Ĉat∞.

• An example of a colimit computation is that if G ∼= colimGi, then G-sets is limit of Gi sets.

• Another example of this is in the previous lecture while forming the pushout C/D (Eq. (1)). One
can see that C/D = ker(iR).
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3 - Lecture II : Dualizable categories. Dual Cats and Cont. K-theory.

Construction 3.5. PrL has natural tensor product called Lurie Tensor product. PrL has symm
monoidal structure defined by C,D ∈ PrL, then C ⊗ D ∈ PrL is determined by

FunL(C ⊗ D, E) = Funbicont(C × D, E) (11)

Remark 3.6. • The symmetric monoidal structure is closed and the internal hom is FunL(C,D).

• In particular we have an explicit description

C ⊗ D = FunL(C,Dop)op. (12)

• PrL has a lot of idempotent algebra objects. Sp ∈ PrL. An modules over Sp are presentable
stable ∞-categories.

Notation 3.7. PrLst ⊂ PrL consists of presentable stable ∞-categories whose unit it Sp.

Definition 3.8. C ∈ PrLst is dualizable if it is dualizable in PrLst. Then C has a dual C∨ = FunL(C,Sp)
with the maps

1. ev : C ⊗ C∨ → Sp

2. coev : Sp→ C∨ ⊗ C

such that the duality conditions are satisfied.

Example 3.9. 1. C = Ind(C0) and C0 ∈ Catperf , then C is dualizable.

2. C = D(A) and C∨ = D(Aop), The evaluation map is taking the tensor and the coevulation map
is given by the diagonal over A⊗Aop.

Definition 3.10. Let Catdualst be the ∞-category

1. Objects are dualizable ∞-categories.

2. Morphisms are continuous functors whose right adjoint is also continuous (called strongly con-
tinuous).

Example 3.11.
Ind : Catperf → Catdualst (13)

is a functor. This means that the map between Ind categories admits a right adjoint which is also
strongly continuous. Also a continuous functors of compactly generated infinity categories is strongly
continuous iff it takes C0 → D0. This means that Ind functor is fully faithful.

Theorem 3.12. Let C be a presentable stable ∞-category. TFAE:

1. C is dualizable

2. C is a retract of a compactly generated category in PrLst

3. The colimit functor
colim : Ind(C)→ C (14)

admits a left adjoint Ŷ : C → Ind(C)

4. C is generated by compactly exhaustible objects (to define).

5. There exists compactly generated categories A,B ∈ PrL and a strongly continuous localization
functor :

L : A→ B (15)

such that C = kerL.
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4 - Lecture III : Dualizable categories continued. Dual Cats and Cont. K-theory.

6. If D ⊂ D ′ is a fully faithful incluson in PrLst, then C ⊗ D → C ⊗ D ′ is fully faithful.

7. C satisfies Grothendieck AB6 axioms i.e. let I be an indexing set, for each i ∈ I, suppose given
a filtered category Ji and a functor fi : Ji → C. Then∏

I

lim
−→
Ji

fi ∼= lim
−→∏

Ji

∏
i∈i

fi(−). (16)

(this property is true in Anima and also in any compactly generated category).

8. There exists a fully faithful strongly continuous map i : C → D where D is compactly generated.

Sketch of some implications:

1. 2 =⇒ 1: retracts of dualizable are dualizable.

2. 2 =⇒ 3: Check 3 for compactly generated. Argument of Lurie in SAG implies right adjointness.

3. 3 =⇒ 8: Ŷ : C → Ind(C) does the job.

4. 3 =⇒ 5: Same argument as before using compact objects.

5. 8 =⇒ 2: Let i : C → D be the embedding, then iRi = id giving C is a retract of D.

6. 1 =⇒ 2: By presentabilty, there exists a bousfield localization functor Ind(Cκ)→ C.

Claim 3.13. This localization has a continuous section.

Proof of. claim. It is equivalent to show that FunL(C, Ind(C)) → Fun(C, C) is essentially surjec-
tive. By dualizibility, we get

C∨ ⊗ Ind(Cκ)→ C∨ ⊗ C

is again a Bousfield localization as tensoring preserves it which preserves essential surjectivity.

4 Lecture III : Dualizable categories continued.

We recall the equivalent implications of the theorem from the last lecture (Theorem 3.12) along with
two additional equivalent definitions 3 ′ and 5 ′ :

Theorem 4.1. Let C be a presentable stable ∞-category. TFAE:

1. C is dualizable

2. C is a retract of a compactly generated category in PrLst

3. The colimit functor
colim : Ind(C)→ C (17)

admits a left adjoint Ŷ : C → Ind(C)

3’ C is ω1-compactly generated and lim
−→ : Ind(Cω1)→ C has a left adjoint.

4. C is generated by compactly exhaustible objects (to define).

5. There exists compactly generated categories A,B ∈ PrL and a strongly continuous localization
functor :

L : A→ B (18)

such that C = kerL.
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4 - Lecture III : Dualizable categories continued. Dual Cats and Cont. K-theory.

5’ C = ker(D(A)→ D(B)) where A→ B is a homological epimorphism of E1-rings (i.e. B⊗A B ∼=
B).

6. If D ⊂ D ′ is a fully faithful incluson in PrLst, then C ⊗ D → C ⊗ D ′ is fully faithful.

7. C satisfies Grothendieck AB6 axioms i.e. let I be an indexing set, for each i ∈ I, suppose given
a filtered category Ji and a functor fi : Ji → C. Then∏

I

lim
−→
Ji

fi ∼= lim
−→∏

Ji

∏
i∈i

fi(−). (19)

(this property is true in Anima and also in any compactly generated category).

8. There exists a fully faithful stronguly continuous map i : C → D where D is compactly generated.

Back to proving the implications :

• AB6 is equivalent to the fact that the colimit functor lim
−→ : Ind(C)→ C preserves all products.

• For proving 3 ′, we start by proving the following proposition:

Proposition 4.2. If C is dualizable, then C is ω1-compactly generated.

Proof. Use Criterion 5, C ∼= ker(L) where L is strongly continuous and is a morphism between
compactly generated ∞-categories.

Claim 4.3. This forces C to be ω1-compactly generated.

proof of the claim. An object of C is an ind-object {Xi}i∈I where Xi ∈ A such that {LXi} ∈ B has
a zero colimit. This is an ind object in Bω, the transition maps are everntually zero. We can
write I to be the union of countable subsets where this holds.

Proof of 3 ′: If C is ω1-cpt gen, then the colimit functor factors through Ind(Cω1) which is a
right adjoint G. G is essentially surjective and hence by diagram chasing below (also using the
fact that Cω1 is small) we see that it preserves products.

Ind(C) C

Ind(Cω1)

G

lim
−→

F

(20)

Compact morphisms

Let C ∈ PrLst

Definition 4.4. A morphism f : X → Y in C is said to be compact if for every ind-object {Zi}i inI

such that lim
−→Zi = 0, then

lim
−→
i

HomC(Y, Zi)→ lim
−→
i

HomC(X,Zi) (21)

is zero on π∗.

Remark 4.5. 1. X is compact iff idX is a compact morphism.
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4 - Lecture III : Dualizable categories continued. Dual Cats and Cont. K-theory.

2. Compact morphisms form a two-sided ideal.

3. A morphism factoring through a compact object is compact. The converse is true when C is
compactly generated.

Definition 4.6. An object X ∈ C is compactly exhaustible iff it is a sequential colimit along compact
maps.

Theorem 4.7 (Criterion 4 of Theorem 4.1). A presentable stable ∞-category if dualizable iff C is
generated as a localizing subcategory by compactly exhaustible objects.

Proof. If X is a sequential colimit of the form:

X = lim
−→(Z1 → Z2 → · · · ) (22)

where Zi → Zi+1 are compact, then

Ŷ(X) = " lim
−→ "(Z1 → Z2 · · · ).

Then we need to show that for every Ind system " lim
−→ "Wj, we need to show that :

HomC(X, lim−→Wj) = HomInd(C)(" lim−→ "Zi, " lim−→ "Wj). (23)

We do in the following steps:

1. At first, we see that it is enough to show for the case where lim
−→j

Wj = 0.

2. In that case we see that :

lim
−→
i

lim
−→HomInd(C)(Yi, " lim−→ "Wj)

∼= lim
−→
i

(lim
−→
j

HomC(Zi,Wj))

∼= 0

where the last line is zero as the transition maps Zi → Zi+1 are compact.

Let us prove the other direction. If C is dualizalbe, then let i : C → D be fully faithful and strongly
continuous with D compactly generated. C is ω1-compactly generated. Let Z ∈ C be ω1-compact.

Claim 4.8. Z is compactly exhaustible.

Proof of the Claim. iZ ∈ D is ω1-compact, then

iZ = lim
−→{X0 → X1 · · · } (24)

where the morphisms and elements are in D. Now remember that i admits a right adjoint iR giving
us the following :

Z = iRiZ = lim
−→(iRx0 → iRx1 · · · ) (25)

In order to show that the transition maps are compact, ETS that iiRxm → iiiRxn compact for n >> m.
Consider the following square :

iiRxm iiRxn

xm xn

f (26)

For n sufficiently large gives us the existence of the dotted arrow making the bottom triangle commute
and hence the top triangle commute and as the top horizontal arrow actors through a compact object,
this implies that desired arrow is compact.
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5 - Lecture IV: Catdual
st and localizing invariants. Dual Cats and Cont. K-theory.

Proposition 4.9. Let C,D be dualizable. For a continuous functor F : C → D, TFAE :

1. F is strongly continuous,

2. F commutes with Ŷ.

3. F preserves compact morphisms.

4. F is retract of Ind(A0)→ Ind(B0) preserving compact objects.

Let Catdualst be the ∞-cat of dualizable cats and strongly continuous functors.

Example 4.10. Some examples on dualizable categories related to homological epimorphisms are:

1. A morphism A → B is a map of E1-rings. This is a homological epimorphism if D(B) → D(A)
is fully faithful. The kernel of extension of scalars is dualizable.

2. In the context of Almost ring theory (Faltings, Gabber-Romero). Let R be a commutative ring
and I ⊂ R ideal such that :

• I is flat,

• I2 = I

Then R→ R/I is a homological epimorphism.

3. A,B perfect Fp-algebras and A→ B is a surjection, then it is a homological epimorphism.

4. Let X be a compact hausdorff space, then Shv(X, Sp) is dualizable. Here Shv(X, Sp) ⊂ Fun(Open(X)op,Sp)
satisfying the sheaf condition:

• F(ϕ) = 0

• If U1, U2 ⊂ X, then the square

F(U1 ∪U2) F(U1)

F(U2) F(U1 ∩U2)

(27)

is a pullback square.

• Given a filered union Ui of open sets

F(∪Ui) = lim←−F(Ui).

5 Lecture IV: Catdualst and localizing invariants.

The following is a technical statement related to Catdualst :

Theorem 5.1 (Ramzi). Catdualst is ω1-presentable.

Remark 5.2. • One can think of a dualizable category C is determined by Cω1 . Cω1 is a stable∞-category with countable colimits.

• Catdualst is complete nd cocomplete.
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5 - Lecture IV: Catdual
st and localizing invariants. Dual Cats and Cont. K-theory.

Example 5.3. The functor
Ind : Catperf → Catdualst (28)

is fully faithful and it peserves colimits. This is because the existence of the right adjoint C 7→ Cω

Theorem 5.4. The functor
Catdualst → PrLst,ω1

(29)

given by
C 7−→ C (30)

creates colimits. Here the right hand side is the ∞-category of presentable stable ∞-categories which
are ω1-compactly generated and morphisms are continuous functors preserving ω1-compact objects.

Remark 5.5. The above functor has a right adjoint

D 7−→ Ind(Dω1) (31)

Proposition 5.6. Given a diagram of dualizable cats and strongly continuous functors, then lim
−→ Ci is

dualizable (here the limit is in PrL).

Proof. We have that the colimit computation is same as limit in PrRst. Notice that AB6 holds in any
term and in the transition functors hence it holds in the limit.

Remark 5.7. A similar argument proves that if F : C → D is a strongly continuous functor in PrLst and
if C is dualizable. Then the localizing subcategory generated by F(C) is dualizable and the includion
of this category in D is strongly continuous.

Example 5.8. Let C,D ∈ Catdualst . Let F : C → D be a continuous functor. Form E = C ⊕F D consists
of x ∈ C, y ∈ D and ϕ : x→ F(y).

Claim 5.9. • E = ⟨C,D⟩

• E ∈ Catdualst

• i1 : C → E and i2 : D → E are strongly continuous.

• A functor E ′ → E is strongly continuous iff its projections to C,D are strongly continuous.

• Any strongly continuous s.o.d arises in this way where F = iR1 i2

Definition 5.10. A short exact sequence in Catdualst is a sequence

0→ C → D → C/D → 0 (32)

where

• D → C is fully faithful

• C/D := C
∐

D 0.

Remark 5.11. 1. D := ker(C → C/D) = kerdual(C → CD).

2. Ind completion of Karoubi sequence is a s.e.s

3. Any C ∈ Catdualst fits into a SES

0→ C → C ′ → C ′/C → 0 (33)

where C ′.C ′/C are compactly generated. Indeed this choice is functorial namely : C ′ = Ind(Cω1)

and ŷ : C ⊆
−→ Ind(Cω1).

We see that C ′/C are all ind objects in Cω1 whose colimits are zero in C.
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6 - Lecture V : Dualizable inverse limits. Dual Cats and Cont. K-theory.

Definition 5.12. We define
Calkcontω1

(C) = (Ind(Cω1/C)ω. (34)

Have an exact functor Cω1 → Calkcontω1
(C). If x, y ∈ Cω1 , then Hom space in Calkin continuous

category is given between two objects a, b as

HomC(a, b)/HomInd(C)(x(a), ŷ(b)). (35)

Proposition 5.13. If 0→ A→ B → B/A→ 0, then the lower arrow in the diagram

0 A B B/A 0

0 A ′ B ∪A A ′ B/A 0

F (36)

Proof. A ′ → B ∪A A ′ is fully faithful. because pullback of colocalization is again on.

Proposition 5.14. If C → B/A is strongly continuous, then 0→ A→ B ×B/A C → C → 0 is again a
s.e.s

Proof. We need to show that B×B/ACis dualizable. We see that B×B/AC embeds into the laxpullback
of B and C is storngly continuous and in fact it is kernel of localziaiton to B/A.

Theorem 5.15 (Effimov). There is a one-to one correspondence between localizing invariants on
Catdualst and the localizing invariant on Catperf .

In particular, given F a localizing invariant on Catperf , we can define a localizing invariant on
Catdualst denoted by Fcont where Fcont(C) = ΩF(Calkcontω1

(C))

Theorem 5.16 (Tamme, Effimov). If

A1 A2

A3 A4

F ′

F

(37)

is a pullback square in Catdualst . Then any localizing invariant will take this pullback square to a pullback
square.

6 Lecture V : Dualizable inverse limits.

Let I → Catdualst sending i 7→ Ci be a functor. We would like to compute the limit of this functor in
the dualizable world. Abstractly, there is a continuous functor

dual

lim←− Ci → PrL

lim←− Ci (38)

which is not an equivalence.

Example 6.1. • The limit may not be dualizable. Indeed the kernel of the map

D(k[x, y])→ D(k[x±]) (39)

induced from the map of rings is not dualizable. This is because the kernel of this map is D(B)
where SpecB is not convex and hence it is not dualizable (Effimov’s characterization of rings R
such that D(R) is dualizable).

11



6 - Lecture V : Dualizable inverse limits. Dual Cats and Cont. K-theory.

• The limit is dualizable, but the maps from the limit to its components is not strongly continuous
And example is kernel of the map D(Zp) → D(Fp) which is D(Qp) but Qp is locally compact
and not compact thus the transition maps are not strongly continuous.

• Even if both exists, the limit in computed in PrL is different. An example is the map :

dual

lim←−
i

D(Z/pn)→ lim←−
i

D(Z/pn) ∼= D(Zp)
∨
p (40)

is not an equivalence where the L.H.S is the category Nuc(Zp) defined by Clausen-Scholze in
Condensed math.

Remark 6.2. One of the problem in computing limits is that the compact objects do not match up.

Let us analyze the example of dualizable kernel. Let F : C → D be a functor in Catdualst

Claim 6.3. kerdual(F) ⊂ ker(F) is the maximal subcategory such that

1. kerdual(F) is dualizable.

2. kerdual(F) ⊂ C is strongly continuous.

Proof. We start with a lemma

Lemma 6.4. Given a collection of strongly continuous inclusions satisfying the above conditions C ′
α ⊂

C, then ⟨Cα⟩α ⊂ C is strongly continuous.

Proof of the lemma. Take
∏

α Cα → C and consider its image.

Using this lemma and the fact for any inclusion C ′ ⊂ C, there is a dualizable category E and
strongly continuous functors E → C and E → C ′, the claim is proven.

Example 6.5. Let

A

B C
F

G

(41)

be a diagram in Catdualst . Then we have the following claim

Claim 6.6. A×dual
C B := kerdual(A×→

C B → C) where the functors sends a pair (X, Y,ϕ : F(X)→ G(Y))
to cofib(ϕ)

Remark 6.7. Given a finite diagram in Catdualst the functor Eq. (38) is fully faithful.

Now we move to case of countable colimits.

Definition 6.8. Catω1,st is the∞-category of stable∞-category with countable colimits and functors
that preserve countable colimits,

Remark 6.9. Catω1,st is equivalent to PrLω1,st
by send A → Indω1

(A). Here the latter is the ∞-
category of presentable stable∞-category with are ω1-compactly generated and functors that preserve
ω1-compact objects.

Theorem 6.10. There is an adjuncton

Catdual ⇆ Catω1,st (42)

where

12



6 - Lecture V : Dualizable inverse limits. Dual Cats and Cont. K-theory.

1. →: C 7→ Cω1

2. ←: A→ Ind(A)

Remark 6.11. 1. C Ŷ
−→ Ind(Cω1) is the unit of the adjunction.

2. Explicitly adjunction is given by f : Cω1 → A, we get the functor C Ŷ
−→ Ind(Cω1)

Ind(F)
−−−−→ Ind(A).

Proof. All it remains to check that the maps cosntructed in this way preserve (strongly) continuous
conditions. For this we check the following: C ∈ Catdual,D ∈ PrL. Then we have :

FunLL(C, Ind(D)) ∼= FunL(C,D) (43)

The functors from both of sides are defined in the following manner:

1. −→: Let F : C → Ind(D) be an element in LHS, then by definition is has a right adjoint continuous
functor FR : Ind(D) → C which gives such a accessible limit preserving functor D → C via the
inclusion D ↪→ Ind(D) . Thus this defines a left adjoint map C → D.

2. ←−: Let G : C → D which is a left adjoint map. This provides a limit presrving map GR : D → C
This induces a limit prserving functor Ind(D) → Ind(C) → C. Taking right adjoints, we get the
functor C → D. Notice that the right adjoint map also preserves compact objects.

Remark 6.12. • The above works unstably.

• Ramzi proves that the above adjunction is comonadic.

Description of limit: Let I→ Catdual given by i 7→ Ci , then we have a short exact sequence :

0→ Ci
ŷ
−→ Ind(Cω1)→ Ind(Calkcontω1

(Ci))→ 0 (44)

Then we have

Theorem 6.13. The limit can be computed as the following formula:

dual

lim←−
i

Ci = kerdual(Ind(lim←−
i

Cω1

i )→ Ind(lim←−
i

Calkcontω1
(Ci))). (45)

Remark 6.14. In many cases, lim←−i
Cω1

i → lim←−i
Calkcontω1

(Ci) is not a homological epimorphism. If it

is a homological epimorphism, then kerdual in the limit computation can be replaced by ker.

Using the above formula and the fact that products of Karoubi sequences is Karoubi, we see that∏
i

Ind(Ai) ∼= Ind(
∏
i

Ai). (46)

Construction 6.15. Let C ∈ Catdual. Let S be a 2-sided ideal of compact morphisms. Suppose
S = S2.
Define CS ⊂ C to be the localizing subcategory generated by all sequential colimits where the transition
maps are in S.

Proposition 6.16. CS is dualizable and CS ⊂ C is strongly continuous.

Remark 6.17. C/CS is universal localizing subcategory where all morphisms in S go to zero.

13



6 - Lecture V : Dualizable inverse limits. Dual Cats and Cont. K-theory.

Proof of the proposition. Need CS to be generated by compactly exhaustible objects.
Observation Consider any seqeuential collection i→ xi. Such a collection can be extended to the

poset Q≥0,⊂). Then
lim
−→
i

xi = ( lim
−→
(0,1)

xi → lim
−→
(2,3)

xi → lim
−→
(4.5)

xi · · · ). (47)

This shows that CS be generated by compactly exhaustible objects.

The above proposition gives an alternate description of the kernel for any morphism of dualizable
categories.
Description of the kernel: Take S0 to be thecollection of compact morphisms in C that map to zero
under F. Take S = S∞0 to te the collection of f that can be extended from {0 → 1} over [0.1]Q. Then

we see that kerdual(F) = CS.

Remark 6.18. Using the description of the kernel and Theorem 6.13, we see that lim←−dual Ci is generated
by functors f : (Q,⊂) → lim←− Cω1

i such that r ≤ s f(r) → f(s) is a compact morphisms for each Ci0
where i0 ∈ I.
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