Speaker:
Andrei Jaikin-Zapirain
Datum:
Mit, 15/05/2024 - 10:00 - 11:00
Let $\Gamma$ be a group and let $K$ be a field. For every matrix $A\in \text{Mat}_{n\times m}(K[\Gamma])$ and every normal subgroup $N$ of $\Gamma$ of finite index let us define $$\begin{array}{cccc} \phi_{\Gamma/N}^A: & K[\Gamma/N]^n & \to & K[\Gamma/N]^m \\ &(x_1,\ldots, x_n)&\mapsto & (x_1,\ldots, x_n)A\end{array}.$$ This is a $K$-linear map between two finite-dimensional $K$-vector spaces. Thus, we can define a Sylvester rank function of $K[\Gamma]$ by means of $$\text{rk}_{\Gamma/N}(A)=\frac{\text{dim}_K \text{Im} \phi_{\Gamma/N}^A}{|\Gamma:N|}.$$