Skip to main content

Abstracts for MPIM Topology Seminar

Alternatively have a look at the program.

Group trisections and smooth four-manifolds

Posted in
Speaker: 
Jeffrey Lee Meier
Zugehörigkeit: 
Indiana U. / HCM
Datum: 
Mon, 12/12/2016 - 16:30 - 18:00
Location: 
MPIM Lecture Hall
Parent event: 
MPIM Topology Seminar

In this talk, I will introduce the notion of a trisection of a group, and I'll explain how studying group trisections is equivalent to studying smooth structures on 4-manifolds.

Organizational meeting

Posted in
Datum: 
Mon, 31/07/2017 - 16:30 - 18:00
Location: 
MPIM Lecture Hall
Parent event: 
MPIM Topology Seminar
We’ll talk about possible topics.

Z/2-valued finite type concordance invariants of classical links

Posted in
Speaker: 
Rob Schneiderman (CUNY/MPI) and Peter Teichner (MPI)
Datum: 
Mon, 07/08/2017 - 16:30 - 18:00
Location: 
MPIM Lecture Hall
Parent event: 
MPIM Topology Seminar

The Path from Perturbative Chern-Simons Theory to Knot Invariants

Posted in
Speaker: 
Eugene Rabinovich
Zugehörigkeit: 
UC Berkeley/MPI
Datum: 
Mon, 14/08/2017 - 16:30 - 18:00
Location: 
MPIM Lecture Hall
Parent event: 
MPIM Topology Seminar

A survey on things like the Kontsevich integral, the LMO-invariant of 3-manifolds and the Aarhus integral

Posted in
Speaker: 
Aru Ray
Zugehörigkeit: 
MPIM
Datum: 
Mon, 21/08/2017 - 16:30 - 18:00
Location: 
MPIM Lecture Hall
Parent event: 
MPIM Topology Seminar

On Habiro’s 3-manifold/knot invariants

Posted in
Speaker: 
Peter Feller
Zugehörigkeit: 
MPI
Datum: 
Mon, 28/08/2017 - 16:30 - 18:00
Location: 
MPIM Lecture Hall
Parent event: 
MPIM Topology Seminar

The Kontsevich integral revisited

Posted in
Speaker: 
JungHwan Park
Zugehörigkeit: 
MPIM
Datum: 
Mon, 04/09/2017 - 16:30 - 17:30
Location: 
MPIM Seminar Room
Parent event: 
MPIM Topology Seminar

The Khovanov space and generalizations

Posted in
Speaker: 
Andrew Lobb
Zugehörigkeit: 
U. Durham/MPIM
Datum: 
Mon, 11/09/2017 - 16:30 - 18:00
Location: 
MPIM Lecture Hall
Parent event: 
MPIM Topology Seminar

A quantum knot cohomology is a knot invariant recovering a quantum knot polynomial as its Euler characteristic.  Sometimes these cohomologies are the usual singular cohomologies of spaces which are themselves knot invariants.  The first example is due to Lipshitz and Sarkar: the Khovanov space.  I'll tell you why you might care about this if you're only interested in low-dimensional topology.  I'll also sketch the construction, aiming to keep it understandable, and point to some generalizations.  No knowledge assumed.  This is join

Surface systems of links and refined triple linking numbers

Posted in
Speaker: 
Mark Powell
Zugehörigkeit: 
Durham U.
Datum: 
Mon, 18/09/2017 - 16:30 - 18:00
Location: 
MPIM Lecture Hall
Parent event: 
MPIM Topology Seminar

A surface system for a link in the 3-sphere is a collection of Seifert surfaces for the components of the links, that intersect one another transversally and in at most triple points.  The intersections are thought of as oriented manifolds.  Given two links with the same pairwise linking numbers, do they admit homeomorphic surface systems?

A categorical approach to universal knot invariants

Posted in
Speaker: 
Danica Kosanovic
Zugehörigkeit: 
MPIM
Datum: 
Mon, 25/09/2017 - 16:30 - 18:00
Location: 
MPIM Lecture Hall
Parent event: 
MPIM Topology Seminar
© MPI f. Mathematik, Bonn Impressum & Datenschutz
-A A +A