Zugehörigkeit:
RWTH Aachen
Datum:
Die, 21/11/2017 - 16:30 - 17:10
The Hermitian modular group of degree $n$ over an imaginary quadratic field
$K=\mathbb{Q}(\sqrt{-m})$ was introduced by Hel Braun in the 1940s
as an analogue for the well known Siegel modular group. It acts on the
Hermitian half space and the accociated Hermitian modular forms have
been studied thoroughly in the past. However, this talk does not concentrate
on the modular forms but on the modular group itself. For $n=2$ and $m \neq 1,3$,
$m$ squarefree, we will prove that the Hermitian modular group $U(2,2;\mathcal{O}_K)$,