Zugehörigkeit:
University of Oxford
Datum:
Fre, 01/02/2019 - 09:30 - 10:30
Cross ratios naturally arise on boundaries of negatively curved spaces
and are a valuable tool in their study. If one however slightly relaxes the
curvature assumption, simply requiring it to be *non-positive*, things
tend to get more complicated. Even the mere definition of a cross ratio becomes a
more delicate matter.
Restricting to the context of CAT(0) cube complexes $X$, we observe that
most issues disappear if one considers the $\ell^1$ metric on $X$, rather than the
CAT(0) metric. We obtain a canonical cross ratio on the horoboundary of the $\ell^1$