Speaker:
María Inés de Frutos Fernández
Affiliation:
Universität Bonn
Date:
Wed, 20/11/2024 - 14:30 - 15:30
Let $\mathbb{F}_q$ be a finite field, let $K/k$ be a finite Galois extension of function fields over $\mathbb{F}_q$, and let $E$ be a Drinfeld $\mathbb{F}_q[t]$-module defined over the ring of integers of $k$. In joint work with Daniel Macías Castillo and Daniel Martínez Marqués, we have formulated and proven an equivariant refinement of Taelman's formula for the special value of the Goss L-function attached to a Drinfeld module (which can be interpreted as a function field analogue of the analytic class number formula).